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ABSTRACT 

Condensation of the operator (C;V)2 in Quantum Chromodynamics is shown 

by constructing the effective potential through the trace anomaly equation. 

Effects of Wilson loop on the condensation are also studied. 
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Certainly one of the most important problems in low energy Quantum 

Chromodynamics (QCD) is the determination of its correct ground state. Various 

pictures have been offered’ as to how it might be formed, but at the moment we do 

not yet have secure knowledge of its structure and the primary mechanism(s) 

responsible for it. In this note we study the structure of the vacuum in QCD with 

massless quarks by constructing the effective potential for the gauge invariant 

gluonic operator $ z(X) 
I- 

d4x(C?Ev(x))2, where EEV E + gf 

(We use caret to denote operators and the internal group is taken to be SU(N).) 

Our central machinery is the trace anomaly equation for the energy- 

momentum tensor t 
PV 

of the theory with a constant source 3 coupled to $. * From 

it, through a Legendre transform, a non-linear differential equation for the 

effective potential V(b) is derived (see equation (lo)), and is solved for small 

coupling. The solution leads us to conclude that there exists a unique stable 
h 

vacuum in which 0 condenses with positive sign, relative to the perturbative value, 

which agrees with that deduced from experiments. 3 It should be emphasized that 

our discussion does not rely on any assumption of the dominance of certain field 

configurations nor on the large N limit. 

We then introduce the Wilson loop Q(c) into the condensed vacuum and derive 

an exact renormalized equation (see (I I)), which states that the area dependence of 
,. 

Q(c) is determined by how the condensation <I$> changes due to the presence of the 

loop. The salient feature is that the condensation is broken near the loop. 

An elegant derivation of the trace anomaly in QCD4 has been given by 

Collins, Duncan and Joglekar.5 A new situation arises, however, when one 

introduces the source J for d “hard” operator G and wishes to study the J- 

dependence; one needs to renormalize the theory in such a way that multiple 

insertions of i become finite. This must be fully discussed before we can utilize 
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the method of Ref. 5. Below we shall present the discussion without quarks and 

later indicate a change to be made when we include them. 

Our starting point is the generating functional Z, in an axial gauge, given by 

Z : exp iW = 
s 

~2 ioa(nu ii(x))exp i 
I- 

ddx (-CM1 + Jo)(6~“(x))2 + ji(x)Auo(x) ,(I) 

where “0” indicates dimensionally regularized bare quantities and d is the dimen- 

sionality of space-time. For the purpose of renormalization it is convenient to go 

to an alternative representation of Z. By making a scale transformation 

2 gJo : gi/(l + Jo), A:o ~(1 + Jo)‘“:, jyo 5 (1 + Jo)-“j:, Z takes the form (in 

dimensional regularization the Jacobian is unity), 

/ 

A 

Z = exp iW = 9 AJo (n ,i:,(x))exp iJddx { -(%‘~,(;Y,“(x))~ + j io(x)^Aiu(x) } (2) 

where c::(x) is of the same form as Go n u”(x) as a function of AlJO and gJo. Z is 

made finite by the usual renormalization prescription 

9: = g:0!J’EZ3kJ’ El ^lJ - , AJ - Z,(g,, c)-bAuJO , 

jJ” = Z,(g,, cPj~o ,. E = d-4 (3) 

The n-fold insertion of the bare operator go z(K) 
J 

ddx(C#v(x))2 is effected by 

(-a/a JoPw I Jo=o. Observing that W can be regarded as a function of gio and jio, 

it is easy to establish 

(-a/a30Pw I J 
0 

=. = (g$-"o;jw (4) 
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where we : W(Jo = 0) and Do E g,$gia/agi + % 
/‘ 

ddxjia/aj$. Obviously, w is a 

finite function of g2 and j ~ defined by precisely the same form of equations as in 

(3) with subscript J omitted. Now we can define the renormalized n-fold insertion 
,. 

of o to be (g2)-nDnw, where D has the same form as Do in terms of g2 and j u. Let 

us see how the bare and the renormalized n-fold insertions are related. All we have 

to do is to rewrite (g$-nDz in terms of (g2)-nDn using (3) with J = 0. The result is 

(-a/aJO)wI J =. = z-'(g2r1b 
0 

(-a/aJo) 
2 

w[ Jo=o = z-2(g2)-2D2w + ze2(z - 1 - g2a In z/ag’) (g2)-‘Dw (5) 

etc., where z : 1 - g2aln i,/ag'. 

? 

For general n the structure is (-a/a Jo)nW 1 J 
0 

=o= 

k=I 
CnQ(g2)-‘Daw, where C nil is a function of z and its derivatives with respect 

to g2. The gist of all this is that we face an operator-mixing with the mixing 

matrix which is triangular and is of infinite dimension. To handle this situation, we 

first define the renormalized source J to be such that (-a/aJ)“W 1 J=. gives 

precisely (g2)-nDnw. Now if we make the relation between Jo and J non-linear and 

write 

Jo = JZJ(J) = J(Zy) + JZS’) + . ..) f (6) 

then the operator mixing above is succintly described. Indeed from (6) we 

reproduce the form (-a/aJ,)“wt Jozo = ,I, nP. E (zy), zy ', . ..)(-a /a 3' w 1 J=o. 

(i) Comparison with previous equations determines ZJ m terms of z (= &J JO)) . 

Moreover, by explicitly solving the defining equation 6a/aJ)Yv lJzo = 

(+g w, it is not difficult to show that the J-dependence of gi is quite sirr:ple, 

be., 
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8; = g2/(1 + 3 (7) 

We can now apply the analysis of Ref.5 to (2) with (6) and (7) in mind. We 

obtain, in the functional notation of Ref. 5, 
/ 

d4xi :,,(x) = (2 B(g& J)(g: a/ agi + 

% 
s 

d4xj!$x) a/aj$x)), which, by noting j;/g, = jp/g and (7), can be rewritten as 

, (8) 

where the operator Yu d4x(C J (x)j2 : @ 
/ 

*‘uv * 
J is defined by -a /a J. This is the desired 

form of the anomaly equation, which we utilize below. Inclusion of massless quarks 

does not alter the form of (8). Its effect appears only through a change in the E 

function. 
I 

We are in a position to derive the effective potential for $ 3 <Q~>/Q, where 

< > denotes the vacuum expectation value and a is the total space time volume. 

The operators on both sides of (8) are well-defined except for the perturbative 

vacuum matrix elements. Since we are interested in possible non-perturbative 

effects, we shall define them to be zero by subtraction. From Poincare invariance 

of the vacuum, we have < E -1-I (x)>=4<8 
JP 

Joo x > so that in fact (8) is an equation for ( ) 

the energy density c(J) in the presence of the source defined by c(J)Q = 
II 

< 8 Joe(x) X2 = -W, i.e., 

E(J) = [ BkJ)/2gJl(I + Jh , ac/aJ = 4 (9) 

The effective potential V(@) is then constructed by V($) = c(J) - Ja E(J)/aJ.6 At 

present there exist no systematic ways of calculating c(J) or V(o) diagramatically 

but we do not need them; by substituting J = -dV/d$ : -V’ into the definition of V($) 

above, we obtain an exact non-linear differential equation for V(o). For a range of 
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g and .J such that g3 is small, it can be solved. With 6(g3) = bog: + blgz + . . . . the 

equation becomes 

v(o) = K(bog2 + b,g4/(1 - V’) + . ..I $’ + V’ ‘t’ . (IO) 

In what follows we assume the number of massless quarks to be not too large so 

that b. and b, are both negative. We first study (IO) for $2 0. If we keep bog2 

term only, the solution is V(G) = @ - %bog2tiln(g2Q/~4) + Cl with the stationary 

value @s = (u4/g2)exp(2/bog2-C-I). From the definition of one insertion at J = 0, 

@ = -g2aV/3g2, C can be seen to be independent of g.7 If we retain blg4 as well, 

the solution becomes V($) = $ - %b0g2@f(ln(g2Q/u4)), where the function f(x) is 

s 
fdy (I - y - ((1 + y)2 + 2b,/bo2)“) 

-1 
given implicitly by x q 2 . The stationary value 

is $s = [!14/(g2 + b,g4/bo) I[ -(b. + b,g2)/g21 -2bl’bi exp(2/bog2 - C - I). These 

solutions are sketched in Fig. 1. It clearly shows that there exists a single stable 

vacuum whose energy is lower than the perturbative one. Notice that the negative 

character of b. is essential. For @ < 0, it is easy to see from (9) at J = 0 that the 

energy becomes higher than that of the perturbative vacuum. The fact that 4 = 0 

cannot be a stationary point can be shown without assuming small coupling; near 

$ = 0, V(4) = -fibog2Q 1n(g2$/u4) is the exact solution for any value of g. 
,. 

We now introduce the Wilson loop $(c) = (l/N)P Tr exp ig 
/ 

L 
Au((x)dx’ in the 

condensed vacuum. From now on we set J = 0 throughout. It has been shown’ 
,. 

recently that Q(c) = <$(c)> can be made finite by the usual renormalization 

procedure provided that the self-energy of the test particle is isolated. It is 

assumed that this has been done. Then the renormalized Q(c) satisfies 

(I.Ia/ap + B(g)a/ag)$(c) = 0. For simplicity we take a circular loop of radius r, in 

which case $4~) is a function of g and pr. Recalling that g2a/ag2 effects an 
I 

insertion of $Z : 
(J 

d’x;(x) = !‘$d4x$n)), after Wick rotation the above 

equation can be transformed into 
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(II) 

where o is the area of the loop and 

M2(o) = (B(g)/gu) A0 , AQ s J d4x@,(x) - 4) . (12) 

Here Qc(x) (Q) is the vacuum expectation value of i(x) in the presence (absence) of 
n 

the loop, i.e. G,(X) = ~~(x)$(c)>/<$(c)>. It is understood that both e,(x) and $ have 

been made finite by subtracting the perturbative value of 4. Diagramatically M* is 

represented by the exchange of gluons between o and the loop, which shifts the 
A 

expectation value of $ from its vacuum value. The non-trivial contribution to (11) 

starts from order g4. In the large N limit o,(x) = O(N*), 4 = O(N’) and 

$&X) - + = O(1). Finiteness of Q(c) requires A@ to be convergent so that $.(x) 

approaches the vacuum value o at infinity faster than $,(x) - 4 S (16)“. If A@. 

goes like o for large u, then the “area law” for q(c) is obtained. 

The sign of M2 deserves a separate discussion. An important property of the 

Wilson loop is that it tends to reduce the condensation, that is A 0 < 0. More 

precisely external color electric field “expels” the condensation near the source and 

renders Qc(x) negative. We discuss these phenomena for a small loop. 

First we apply the operator product expansion to $(c).~ After simple lowest 

order calculations, we obtain, UP to logarithms in ur, 

L(C) s 1 - g2(@ 2/12N + const). Then from (11) and (12), we get 

AO= 02$/6bON< 0. 

Next we directly calculate the behavior of $.(x) -4 near the loop. Take a 

loop in I-2 plane with its center at the origin and let xu : (0, 0, 0, h). For small h 

dominant contribution comes from the diagrams depicted in Figs. 2a and 2b and is 



L FERMILAB-Pub-80/55-THY 

given, up to logarithmic corrections, by $,(x) -o = -g2(N2 - l/Nn4)(o ‘/(r* + h2j4) - 

(g2/6n2N)kr2$/(r2 + h2j2j < 0. We see that for small r and h the perturbative 

effect dominates. Since c; is negligible for small coupling, @,(x1 itself is negative. 

Equation (11) looks similar to those obtained in Ref. 10. However, our 

equation differs from theirs in the following repsects: Our equation is written in 

terms of renormalized quantities only and is a first order differential equation with 

respect to a global deformation. Note also that the string tension is proportional to 

the difference of <s2 > inside and outside of the loop. We expect that this will 
VV 

lead to the correct sign of M2. 

We are grateful to Bill Bardeen for his interest in our work and useful dis- 

cussions. 
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FIGURE CAPTIONS 

The effective potential obtained in the text. (Our approxi- 

mation is valid except for the region where 3 = -V’ = -1.) 

Lowest order diagrams contributing to d,(x) - $. 
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